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We wish to report a remarkable correlation between the nuclear magnetic resonance spectra 

of alkali metal phenoxides and their rates of alkylation in a number of aprotic solvents. 

The reactivity of synthetg intermediates such as enolates and alkoxides is influenced to 

a great degree by the solvent. The high reactivity of these anions in dipolsr aprotic solvents 

has frequently be;: ;tE;buted primarily to the salvation of the metal counterion by the dipolar 
,,, 

aprotic solvent, 
4 

while the possibility of additional transition state solvation has re- 

ceived little emphasis. In order to provide direct information on the nature of these solvent 

effects, we have examined the proton NMR spectra of alkali metal phenoxides in a number of sol- 

vents. Some of our data for sodium and potassium phenoxide are listed in the Table.5 

Since the chemical shift of an aromatic hydrogen is related to the electron density at that 
6 

position of the ring, the upfield shift of the phenoxide hydrogens7 should reflect the ionic 

character 0: the metal-oxygen bond (in aprotic solvents), andohence the solvating ability of 

the medium. In principle, the NMR spectra of metal enolates should provide sirmlar infor- 

mation; however , phenoxides have the advantage of hav;;$itydrogens (para) farther removed from 

the metal cation and the associated solvation shell. 
13 

Other workers have shown that the W spectra of phenoxides are also dependent on solvent. 

and their values are included in the Table. The W and NMFi data are compared in Figure 1. It 

can be seen that the order of solvating ability determined by the two methods is quite similar. 

We were particularly interested to see if the chemical reactivity of phenoxides could be 

correlated with this apparent solvating ability. Ugelstad and co-workers have measured the 

rates of alkylation of sodium an$4potassium phenoxides with n-butyl chloride and with n-butyl 

bromide in a number of solvents, and more recently Reichle has measured the reactivity of 
15 

phenoxides toward several aryl halides rn a number of solvents. 
14 

In Figure 2 the kinetic data 

for theigeaction of potassium phenoxide with n-butyl bromide and with 4-chlorodiphenyl- 

sulfone are compared to the chemical shifts. 

This comparison clearly distinguishes between the two types of solvents involved, the 

ethers (dioxane$eTHF, and the glymes), and the dipolar aprotic solvents (acetone, acetonitrile, 

DMF, and DMSO). The close correlation between the reaction rates and the NMR shifts in the 

ethers is consistent with the view that the primary interaction of these solvents is with the 

metal cation, in both the ground state and the transition state. 
14,17 

It is perhaps premature 

to speculate on the reasons for the departure of the dipolsr aprotic solvents from this 
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Table 

Sodium phenoxide Potassium phenoxide 

Nma Wb NMRa Wb 

no. solvent ortho meta 

1 D2Q 
2 n-butylsmine 
3 dioxane 
4 acetone 
2 TRF acetonitrile 

7 glyme 
8 diglyme 
9 triglyme 
10 tetrsglyme 
ll DMF 
12 DMSO 
13 RMPA 

6.64 
6.39 

Z?E 
2% 
6:48 
6.41 

7.16 

6.85 
6.83 
6.81 

Ei 
6.63 

Pa* &(ET) 

"6.59 287 (99.6)' 
6.17 308 (92.8) 
2.;; . 299.7 (95.4) 

2% 3ci.6 (95.1) 
6.18 302 (94.7) 
6.13 - 
6.10' - 
6.07 
;$Jd 32; (88.5)e 

5:78 : 

ortho meta para E'_(RT) 

6.46 
6.27 
6.41 
6.29 
6.31 

z:: 
6.23 

2:: 
5.97 
6.16 

619.2 6123 
6.91 6~5~ 3006.8 (93.2) 
6.85 6.11 
6.86 6.06 

;.;; 

6:73 

;.!$ 

5:85 
6.65 5.75 - 
6.61 5.74 

100 

'Proton chemical svfts in ppm relative to TMS (6 = 0) (relative to DSS in D20), 
all at ca. 35". Wavelength of secondary band in nyr; transition energy in kcal/mole; 
from ref. 13c unless otherwise indicated. 'In water; see ref. 13a. dPsrtly insoluble. 
e Ref. 13 b; see also ref. ljd. 
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Figure 1. Correlation of W 
data (from ref. 13) with RMR data 
(chemical shift of psra hydrogen): 
(0) sodium phenoxide; 
(0) potassium phenoxide. 

66.2 6.1 6.0 5. 9 5.8 5.7 

Figure 2. Comparison of rate data with chemical 
shift (psra) of potassium phenoxide: (0) reaction 
with n-butyl bromide at 25' (ref. 14); (c)reaction 
with p-chlorodiphenylsulfone at 160" (ref. 15). 
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correlation. 

Despite the synthetic importance of metal enolates and alkoxides, the influence of solvent 

and cation on the nature of the metal-oxygen bond and the type of ion-pairing involved in these 

systems is still not well understood. By studying the ground state properties of phenoxides and 

other systems, we hope to learn more about the nature of cation-solvent interactions, and the 
1s 

influence of solvent on the reactivity of synthetic intermediates. 
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Although measurements of ground state salvation have been compared in some cases with 
reaction rates in a qualitative sense (for example, ref. 13c), we are not aware of any 
previous examples of a direct numerical comparison. 
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